If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24p^2+18p-15=0
a = 24; b = 18; c = -15;
Δ = b2-4ac
Δ = 182-4·24·(-15)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-42}{2*24}=\frac{-60}{48} =-1+1/4 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+42}{2*24}=\frac{24}{48} =1/2 $
| 2/5u-2/3=-1/4 | | w/6=24 | | (7x-9)(6x+5)=0 | | 2x^2+20x=-60 | | 2.3x+2(0.75x-3.5)=7.5 | | 1/9(x-18)+1/3(2x+3)=x-3 | | -8=-65+x/5 | | |7x+5|=|3x-13| | | (4/(5x))+5/10=11/2x+7/5 | | y=1+1.25 | | |6-2x|=-8 | | x/45=11 | | 3x^2=66-7x | | 16x+4-6+21x=8-4x | | Q^2-12q+32=0 | | 2^2x-2^x=-1 | | 3(7-2x)=5(-3x+4) | | 3/4p+10=55 | | 11/2x-13/2=10 | | -10x+50=0 | | .65t+0.35(10-t)=0.61(10) | | .8y=24 | | 13/4x=28 | | 6(3n)=12/3n | | 2y^2-2y+42=0 | | -10(x+5)+100=0 | | 5x+7x-54=66 | | 3p-2-5p=2p-4 | | 448n^2-175=0 | | F(x)=13x^2+159 | | |3x−6|=−24 | | (7y+2)^2+256=0 |